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Abstract
The study of the critical dynamics in complex systems is always interesting yet challenging.Here, we
choosefinancialmarkets as an example of a complex system, and do comparative analyses of two stock
markets—the S&P 500 (USA) andNikkei 225 (JPN). Our analyses are based on the evolution of cross-
correlation structure patterns of short-time epochs for a 32 year period (1985–2016).We identify
‘market states’ as clusters of similar correlation structures, which occurmore frequently than by pure
chance (randomness). The dynamical transitions between the correlation structures reflect the
evolution of themarket states. Powermappingmethod from the randommatrix theory is used to
suppress the noise on correlation patterns, and an adaptation of the intra-cluster distancemethod is
used to obtain the ‘optimum’number ofmarket states.We find that the S&P 500 is characterized by
fourmarket states andNikkei 225 byfive.We further analyze the co-occurrence of pairedmarket
states; the probability of remaining in the same state ismuch higher than the transition to a different
state. The transitions to other statesmainly occur among the immediately adjacent states, with a few
rare intermittent transitions to the remote states. The state adjacent to the critical state (market crash)
may serve as an indicator or a ‘precursor’ for the critical state and this novelmethod of identifying the
long-termprecursorsmay be helpful for constructing the early warning system infinancialmarkets, as
well as in other complex systems.

1. Introduction

Afinancialmarket is a highly complex and continuously evolving system [1–3]. To understand the statistical
behavior of thefinancialmarket and its constituent sectors [4–9], researchers focused their attention on the
information of co-movements and correlations among the stocks of themarket. It is well known that themean
correlation among the stocks assumesmuch higher values duringmarket crashes than in normal business
periods [10]. Similarly, certain correlation structures seem to occurmore frequently than by pure chance
(randomness), specially whenmarkets approach a critical period or crash [11, 12]. However, to identify such
similar (clusters) correlation patterns, referred as ‘market states’, as was previously attempted byMunnix et al
[13, 14], is rather challenging due tomany factors. Thefirst factor is that financial time series is non-stationary;
second factor is that there is always noise present in the correlations computed over finite length time series data
[15], and it is essential to suppress the corresponding noise in correlationmatrices to reveal the actual
correlations. To tackle the first factor of non-stationarity, weworkwith short time series so that the number of
time steps over whichwe compute the correlations can be considered as reasonably stationary.However, with
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short time series the correlationmatrices become highly singular [16–18]. To tackle the second factor of noise
reduction, various techniques [19, 20] are available.Here, we shall use a recent and efficient one, namely the
powermapmethod [19, 21, 22], for noise reduction as well as breaking the degeneracy in the eigenvalues so that
the correlationmatrices are no longer singular. Furthermore, the problemoffinding similar clusters (groups) of
the correlation patterns is a daunting task by itself. To go beyond the simple quantification offinancialmarket
states in terms of the average correlation, clustering techniques seempromising as does the study of eigenvalues
of the correlationmatrix of the corresponding time series [15]. In the research of clustering, the k-meansmethod
has had some success for top-to-down clustering, but it suffers fromonemajor drawback: the number of clusters
is ad hoc. Earlier,Munnix et al [13] had provided a schemewhere all the correlationmatrices at different epochs
were initially regarded as a single cluster and then divided into sub-clusters by a procedure based on the k-means
algorithm. They stopped the division process when the average distance from each cluster center to itsmembers
became smaller than a certain threshold. Based on the top-to-down hierarchical clusteringmethod and the
threshold at 0.1465, which represented the best ratio of the distances between clusters and their intrinsic radii,
Munnix et alhad determined the number ofmarkets states forUSA to be eight. In the present paper, for
determining the ‘optimal’number of clusters, we usemultidimensional scaling (MDS) technique [23]with two/
three-dimensional representations, which are comparatively easier for visualization and studying time
evolution. So, usingMDSmap,we apply k-means clustering to divide the clusters of similar correlation patterns
into k groups.We propose a newway, based on the variance of cluster radii, for estimating the number of clusters
k, which is fairly robust and stable.We thus have a considerable degree of confidence in determining the
‘optimal’ number ofmarket states identified by the new prescription. For our research, we have used adjusted
closure price data fromYahoofinance [24] for the S&P 500 (USA) andNikkei 225 (JPN) stock exchanges, for the
32 year period (1985–2016). The stock list has beenfiltered such that we have only stocks whichwere included in
themarket index for the entire period of 32 years. Among others, ourmainfinding is that there exist fourmarket
states inUSA and five in JPN.We then study the dynamical transitions between themarket states, in a
probabilisticmanner; we also analyze the co-occurrence of pairedmarket states and find that the probability of
remaining in the same state ismuch higher than jumping to another state. The transitionsmainly occur among
adjacent states, with a few rare intermittent transitions to the remote states. The state adjacent to the critical state
may indicate a ‘precursor’ to the critical state (market crash) and this newmethod of identifying the long-term
precursorsmay be helpful for constructing the early warning system in financialmarkets, and in other complex
systems.

The paper is organized as follows: we present briefly themethodology and the data description. Thenwe
present themain part of data analyses alongwith the abovementionedfindings; additional details can be found
in the supplementary information is available online at stacks.iop.org/NJP/20/103041/mmedia. Finally, we
present summary and concluding remarks.

2.Data description,methodology and results

2.1.Data description
Wehave used the database of Yahoofinance [24], for the time series of adjusted closure price for two countries:
S&P 500 (USA) index andNikkei 225 (JPN) index, for the period 02-01-1985 to 30-12-2016, and for the
corresponding stocks as follows:

• USA—02-Jan-1985 to 30-Dec-2016 (T= 8068 d); Number of stocksN=194;

• JPN—04-Jan-1985 to 30-Dec-2016 (T= 7998 d); Number of stocksN=165,

wherewe have included the stocks which are present in the indices for the entire duration. The sectoral
abbreviations are given in table 1.

The list of stocks (alongwith the sectors) for the twomarkets are given in the tables S1 and S2 in
supplementary information.

2.2. Cross-correlationmatrix and powermappingmethod
Wepresent a study of time evolution of the cross-correlation structures of return time series forN stocks, and
determination of the optimal number ofmarket states (correlation patterns that existmore frequently then by
pure chance or randomness); also, the dynamical evolution of themarket states over different epochs. The daily
return time series is constructed as = - -( ) ( ) ( )r t P t P tln ln 1k k k , where Pk(t) is the adjusted closing price of
the kth stock at time t (trading day). Then, the cross-correlationmatrix is constructed using equal-time Pearson
cross-correlation coefficients, t s s= á ñ - á ñá ñ( ) ( )C r r r rij i j i j i j, where i, j=1, ...,N, τ indicates the end date of
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the epoch of sizeM d, and á ñ... aswell as the standard deviations are computed over that epoch.Here, we
computed daily return cross-correlationmatrix t( )C computed over the short epoch ofM=20 d, for (a)USA
withN=194 stocks of S&P 500 for a return series ofT=8060 d, and (b) JPNwithN=165 stocks ofNikkei
225 forT=7990 d, during the calendar period 1985–2016.We use epochs of 20 d to obtain a balance between
choosing short epochs for detecting changes and long ones for reducing fluctuations. Infigure 1, we show the
time evolution of the return of themarket index, t( )r , alongwith themeanmarket correlation (average of all the
elements of the cross-correlationmatrix),μ(τ), and theGini coefficient that characterizes the variation in the
distribution of the correlation coefficients. Evidently, whenever there is amarket crash (fall in the r(τ)), themean
market correlationμ(τ) rises a lot, and theGini coefficient falls drastically, indicating thatmarket is extremely
correlated andmost of the stocks behave similarly (see [10]). Since the assumption of stationaritymanifestly fails
for longer return time series, it is often useful to break the long time series of lengthT, into shorter epochs of size
M (such thatT/M=n). The assumption of stationarity improves for the shorter epochs used. Asmentioned in
the introduction, we use the powermap technique [19, 21, 22] to suppress the noise present in the correlation
structure of short time series. In thismethod, a nonlinear distortion is given to each cross-correlation coefficient
within an epoch by:  +( )∣ ∣C C Csignij ij ij

1 , where ò is the noise-suppression parameter. This also gives rise to
an ‘emerging spectrum’ of eigenvalues, arising from the breaking of the degeneracy of the zero eigenvalues (see
[15, 22] for recent reviews).

2.3. Noise-suppression in a short time cross-correlationmatrix
First, we study the effect of the noise-suppression parameter ò on the cross-correlationmatrix and its eigenvalue
spectrumwithin an epoch. The cross-correlation structure can be visualized easily through a two/three-
dimensionalmap of coordinates generated through aMDS algorithm. TheMDS is a tool of nonlinear
dimensional reduction to visualize the similarity of the data set in aD-dimensional space. Each object is assigned
to a coordinate space inD-dimensional space keeping the between-object distance preserved, as close as

Table 1.Abbreviations of different sectors for S&P 500 andNikkei 225
markets.

Labels Sectors Labels Sectors

CD Consumer

discretionary

ID Industrials

CS Consumer staples IT Information

technology

CP Capital goods MT Materials

CN Consumer goods PR Pharmaceuticals

EG Energy TC Technology

FN Financials UT Utilities

HC Health care

Figure 1.Results ofmarket evolution for (a)USA and (b) JPN, respectively. The top row shows the returns of the respectivemarket
indices. Themiddle row shows themeanmarket correlation (averaged over all the cross-correlation coefficients) of the respective
markets. The bottom row shows the inequality in the distribution of the cross-correlation coefficients, as characterized by theGini
coefficient. Evidently, whenever there is amarket crash, themeanmarket correlation becomes high and theGini coefficient becomes
low, indicating that all the stocks behave similarly.
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possible. The choice ofD=2 orD=3 is for optimizing the object location to two/three-dimensional scatter
plots ormaps. As an input to theMDS algorithm, we provide the distancematrix [25], generated from the
correlationmatrix, using the nonlinear transformation:

= -( )d C2 1 .ij ij

The effect of the variation of the parameter ò on noise reduction and determining the optimal number ofmarket
states, can thus be better captured through theMDS. The question iswhat should be the ideal choice of the noise-
suppression parameter ò? A very small value of ò, say ò=0.01, surely breaks the degeneracy of eigenvalues (giving
rise to an ‘emerging spectrum’with interesting properties [10]) but does not contributemuch to noise-
suppression.On the other hand, a large value, say ò=0.5, suppresses the noise in the correlation pattern and
thus improves clustering; however, the emerging spectrum tends to approach the original spectrumor even
overlapwith it. Furthermore, it also distorts the original spectrum to some extent. Yet we know, that the
information is optimized in some sense (see [22] section 2), and the basic information of the largest eigenvalues
determining themarket and themarket sectors are not significantly distorted.We need the noise suppression
not only to get good clustering, as in [13], but beyond that, it is the dependence of the intra-cluster distance on
the noise-suppression parameter, which proves crucial to the determination of the optimal state number.Hence,
we use ò=0.6 and this choice of a high value is based on the robustness and finding distinct clusters of stocks
usingMDS. The effect can be seen through the supplementary figures S2 and S3. Further, ourmain aim is tofind
the optimal number ofmarket states, based on correlation structures which are similar and appearmore
frequently. Hence, we formulate a similaritymeasure, ζ (to be defined later) between different cross-correlation
matrices at different epochs τ, and thenfind similar groups of correlationmatrices across different epochs.We
find thatwith ò=0.6, the noise-suppressed cross-correlation structures can be groupedwell into similar
clusters (aswewill describe later).While wefind that the number ofmarket states is not very sensitive to the
noise-suppression parameter but the dependencewill be useful later. A higher value of ò lowers themean of the
cross-correlation coefficients,μ (see supplementary figure S1) and themaximumeigenvalueλmax of the cross-
correlationmatrix.

Figure 2 shows the effect of noise-suppression using powermappingmethod [10, 16, 19, 26] on the short
time cross-correlationmatrix . Figure 2(a) shows a correlationmatrix computed for the short epochM=20 d
forUSAwithN=194 stocks of S&P 500 ending on 30/11/2001 (arbitrarily chosen date). The corresponding
MDSmap of the correlationmatrix is shown infigure 2(d). For any short time seriesM<N, the highly singular
correlationmatrices will haveN−M+1 degenerate eigenvalues at zero.Hence, in our case the eigenvalue
spectrum consists of 175 eigenvalues at zero, followed by 19 distinct positive eigenvalue. The nonlinear power
mappingmethod removes the degeneracy of eigenvalues at zero, leading to an emerging spectrum [10, 15].
Figure 2(b) shows the correlation pattern for ò=0.01. The effect of the small distortion on the corresponding
MDSmap is shown infigure 2(e). The effect is less visible onMDSmap for small distortion.Next, we use a high
value of noise-suppression parameter ò=0.6 to reduce considerably the noise of the correlationmatrix (shown
infigure 2(c)). The effect of ò=0.6 on correspondingMDSmap is strong, as shown infigure 2(f). Note that the
clusters of stocks in theMDSmaps are distinct and denser as compare to lownoise-suppression (ò=0.01) or
without noise-suppression (ò=0).

2.4. Noise-suppression in a similaritymatrix among correlationmatrices over different epochs
The noise-suppressed cross-correlation structures of returnmatrices t( )C across different times τ=1,K, n,
can be compared based on their similarities. If there are two correlationmatricesC(τ1) andC(τ2) at different
epochs τ1 and τ2, each computed over a short epoch ofM d, then to quantify the similarity between the
correlation structures, the similaritymeasure is computed as: z t t t tº á - ñ( ) ∣ ( ) ( )∣C C, ij ij1 2 1 2 , where ∣ ∣...
denotes the absolute value and á ñ... denotes the average over allmatrix elements {ij} [13].We then use theMDS
map to visualize the information contained in n×n similaritymatrix, where each element is ζ(τp, τq), where p,
q=1,Kn.

Interestingly, the noise-suppression applied to individual correlationmatrices in short epochs, has a
dramatic effect in the similaritymatrix too. Figure 3 shows the effect of noise-suppression on the similarity
matrix [13] and the correspondingMDSmap. Each correlationmatrix is computedwithN=194 stocks of S&P
500; hence, for the time series of lengthT=8060 d during the period 1985–2016, there are n=805 correlation
matrices constructed from short epochs ofM=20 d and shifts ofΔ τ=10 d (50%overlapping epochs).
Similarly, we haveN=165 stocks ofNikkei 225; the time series of lengthT=7990 d in the same period yield
n=798 correlationmatrices. The sharp changes in the structural patterns of the similaritymatrices become
evident at higher ò=0.6. It is noteworthy that figure 3(e) shows the block structure for theUSmarket and
reveals the fact that behavior ofUSmarket was relatively calmer till 2002 and it becamemore volatile afterwards,
the red–yellow stripes highlighting the crash periods. Similarly, figure 3(g) shows that the Japanesemarket
becamemore volatile from1990 onward; also, it went throughmore critical periods as compared toUSmarket.
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Importantly, theMDSmapswith the noise-suppression parameter ò=0.6 aremore compact and denser,
which lead to better clustering and determination of optimal number ofmarkets states (see also supplementary
figures S2 and S3).

Figure 2.Noise-suppression in a short time cross-correlationmatrix. (a) and (d) show the correlation pattern and corresponding
MDSmap, respectively, for a correlationmatrix of short epoch ofM=20 d andN=194 stocks ofUSA, ending on 30/11/2001. The
powermappingmethod [19] is used to reduce the noise of the singular correlationmatrix (M<N) formed by the short time series.
Two different noise-suppression parameter values, ò=0.01 and ò=0.6, are used for this purpose. A small value of ò=0.01 is used
for (b) and (e). In (c) and (f), when a higher distortion of ò=0.6 is given to the correlationmatrix, the shape of emerging spectrum as
well as theMDSmap change drastically. In theMDSplot, the stocks with high correlations come nearer to each other and formmore
compact and distinct clusters, as compared to ò=0 and ò=0.01.

Figure 3.Noise-suppression in a similaritymatrix (ζ) among correlationmatrices over different epochs. (a) and (e) show the similarity
matrices (without noise-suppression ò=0 andwith noise-suppression ò=0.6, respectively) among 805 correlationmatrices; (b)
and (f) show the correspondingMDSmaps forUSA. (c) and (g) show the similaritymatrices (without noise-suppression ò=0 and
with noise-suppression ò=0.6, respectively) among 798 correlationmatrices; (d) and (h) show the correspondingMDSmaps for
JPN. The similaritymatrices give insight of the stockmarket evolution over 32 years (1985–2016). Red–yellow strips in the similarity
matrices exhibit the crashes of the respectivemarkets. The effect of noise-suppression is visible on both similaritymatrices aswell as
MDSmaps.
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2.5.Determining optimal number ofmarket states
Todetermine the number ofmarket states, wefind the number of clusters that can group together the noise-
suppressed cross-correlation returnmatrices t( )C across different epochs τ=1,K, n, based on their
similarities [13].We use theMDSmap to visualize the information contained in n×n similaritymatrix, and
then use thisMDSmapwith n objects for k-means clustering. The k-means clustering, which is a heuristic
algorithm, aims to partition n numbers of correlationmatrices into k clusters or groups inwhich each object/
matrix belongs to the cluster with the centroid (nearestmean correlation), serving as a prototype of the cluster.
In k-means clustering, the value of k can be optimized by different techniques [27, 28]. Here, we propose a new
approach for optimizing k.Wemeasure themean and the standard deviation of the intra-cluster distances using
an ensemble of fairly large number (say 500) of different initial conditions (choices of random coordinates for
the k-centroids or equivalently random initial clustering of n objects); each set of initial conditionsmay result in
slightly different clustering of the n different correlationmatrices. If the clusters are distinct (or far apart in
coordinate space) then even for different initial conditions, the k-means clusterings yield the same results,
yielding a small variance of the intra-cluster distance. The problemof allocating the correlationmatrices into the
different clusters becomes acutewhen the clusters are close or overlapping, as the initial conditions can influence
thefinal clustering. So there is a larger variance of the intra-cluster distance. Therefore, theminimumvariance
or standard deviation for a particular number of clusters displays the robustness of the clustering. For optimizing
the number of clusters, we propose that one should look formaximumk, which has theminimum variance or
standard deviation in the intra-cluster distances with different initial conditions.We propose this is easier than
determining the ‘elbowpoint’ from the intra-cluster distance versus number of clusters curve [28].

For each cluster, one computes the average/variance of the point-to-centroid distances for all the points
belonging to the cluster; themean/variance of the intra-cluster distances is themean/variance of the k values
obtained from each of the k clusters. Next, we use 500 different initial conditions for the k-means clustering, each
yielding a slightly different clustering result. One then computes the average as well as the variance (or standard
deviation) of themean intra-cluster distances among the ensemble of 500 runs. Then, the plots of average intra-
cluster distance as functions of the number of clusters k forUSA and JPN are shown infigure 4(a) and (b),
respectively. The standard deviations of the intra-cluster distancesmeasured for 500 initial conditions are shown
as the error bars. The insets offigures 4(a) and (b), show the plots for 500 initial conditions. Asmentioned earlier,
the value of k is optimized by keeping the standard deviation lowest and the number of clusters highest; note that
for k=1, the standard deviations are always trivially zero.Wefind that forUSA, the standard deviations are low
till k=4 and then grow for higher number of clusters; thus, k=4 is the optimal number of clusters. For JPN,
which ismore complex thanUSA, the standard deviation is low for k=1, 2, 3, increases for k=4 and then
decreases drastically for k=5; beyond that again the standard deviation is higher. Thus, k=5 is the optimum
number of clusters for JPN.

Figure 4.Plots of intra-cluster distance as a function of number of clusters. For (a)USA and (b) JPN, for the noise-suppression
parameter ò=0.6. The k-means clustering is performed on theMDSmap generated from805 noise-suppressed correlationmatrices
of USA and 798 noise-suppressed correlationmatrices of JPN,with 500 initial conditions in k-means clustering. The error bars are the
standard deviations of the intra-cluster distances arising from the ensemble of 500 random initial conditions to centroids for the initial
clustering. The plots show theminima of standard deviations at k=4 forUSA and k=5 for JPN,which indicate the ‘optimal’
number of clusters. Inset: plot of intra-cluster distance versus k for all 500 random initial conditions. Each colored line corresponds to
one such initial condition.
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Thefinal k-means clustering of the correlationmatrices in the similaritymatrix is therefore performed for
k=4 clusters (USA) and k=5 clusters (JPN), as shown infigures 5(a) and (b), respectively. (See supplementary
movie 1 andmovie 2 formore orientations of theMDS in 3-dimensions alongwith the clustering displayed in
different colours, forUSA and JPN, respectively.)We identify the points in each cluster (different colors
represent different clusters)with similar correlation patterns and nearbymean correlation as onemarket state.
Based on k-means clustering, figure 5(c) shows four differentmarket states S1, S2, S3 and S4 ofUSA, where S1
corresponds to a calm state (with lowmean correlation) and S4 corresponds to a crash or critical state (with high
mean correlation);figure 5(d) showsfivemarket states S1, S2, S3, S4 and S5 of JPN,where S1 corresponds to a
calm state and S5 corresponds to a critical state, respectively. The states are arranged in the increasing order of
mean correlation, in accordance with the finding in [13] that the clustering of correlationmatrices yields similar
(but not the same) results onewould obtain by clustering just the highest eigenvalues. Here, we can also see clear
differences structure-wise among the correlationmatrices, e.g., there are strong intra-sectoral correlations
within the energy,finance and utility sectors, in each of themarket states ofUSA.

Itmay also bementioned that the selection of noise-suppression parameter ò=0.6 is not totally arbitrary.
We compared the plots of the average intra-cluster distance as function of the number of clusters for bothUSA
and JPN, using ò ranging from0.1 to 0.7 (shown in supplementary figures S2 and S3). The outcome of the
comparison is that ò=0.6 yields the best results.

Figure 5.Classification ofmarket states. (a)USmarket into fourmarket states. (b) Japanesemarket into fivemarket states. Fullmovies
of the different orientations of theMDSmaps in 3-dimensions, alongwith the clusterings displayed in different colors, are included
for bothmarkets in the supplementary data (see supplementarymovie 1 andmovie 2). Here, k-means clustering is performed onMDS
maps constructed fromnoise-suppressed (ò=0.6) similaritymatrix (ζ). The coordinates assigned in theMDSmap represent the
corresponding correlationmatrices. ForUSmarket, we have 805 correlationmatrices of epochM=20 dwith a shift ofΔt=10 d
(50%overlapping epochs); for Japanesemarket, we have 798 correlationmatrices for the same. (c) shows the four typical states ofUS
market S1, S2, S3 and S4, where S1 corresponds to a calm state (with lowmean correlation) and S4 corresponds to a crash or critical
state (with highmean correlation). (d) shows thefive typical states of Japanesemarket S1, S2, S3, S4 and S5, where S1 corresponds to a
calm state and S5 corresponds to a critical state.
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2.6. Transition probabilities and dynamics ofmarket states
Once the classification of the short-time correlationmatrices into differentmarket states is complete, one can
follow the evolution of themarket as dynamical transitions between differentmarkets states. Figures 6(a) and (c)
show the evolution dynamics ofmarket states ofUSA and JPN, during 1985–2016. InUSA, themarket oscillates
among the four states S1, S2, S3 and S4.Often S1 or S2 states (with relatively lowmean correlations) tend to
remain in the same state for a long time; at other times, themarket jumps to a highermean correlation state S3 or
S4. Similarly, for JPN the dynamical transitions among the fivemarket states S1, S2, S3, S4 and S5. The
probabilistic plots of themarket states dynamics are shown infigures 6(b) and (d), forUSA and JPN,
respectively. The color length of anymarket state is the probability of that state computed during 110 d (10
overlapping epochs). Evident from the probability plots: (a) InUSA, before 2002 themarket wasmostly in state
S1; themarket becamemore volatile, withmore frequent transitions to other states, 2002 onward, and (b) in
JPN,market becamemore volatile from1990 onward. The same kind of behavior is also observed from the
temporal evolution of themean correlation (see supplementary figure S1).

Figures 7(a) and (b) show the bar plots of the counts for the co-occurrences of themarket states forUSA and
JPN, respectively; the networks representing the transition probabilities forUSA and JPN are, respectively,
shown infigures 7(c) and (d), with corresponding values given in tables 2 and 3. ForUSA, the transition
probability of S S3 4 is about S S6%, 3 2 is about 33%, and the probability of staying in the same state

S S3 3 is about 58%. Thus, the state S3warns of the possibility of a transition or acts like a ‘precursor’ to the
state S4, though the probability for such a transition is still comparatively low. Similarly for JPN, for which the
transition from S S4 3 (about 33%) is also quite a bitmore probable than from S S4 5 (about 8%), the state
S4may act like a ‘precursor’ to the critical state S5. Entries just above and below the diagonals of the D3 bar plots
are also quite high, which show that the transitions primarily happen between adjacent states. Exceptions of
remote transitions occur, e.g., in the BlackMonday crash of 1987.

Figure 6.Dynamical evolution ofmarket states forUSA and JPN. (a)Temporal dynamics of theUSA in four different states (S1, S2, S3
and S4) for the period of 1985–2016. (b)Probability plot of the fourmarket states with each color length corresponds to the evolution
probability of these four states during 110 d (10 overlapping epochs). (c) and (d) show similar results for JPNwithfivemarket states
(S1, S2, S3, S4 and S5).
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Figure 7.Transition probabilities ofmarket states and determination of long-term ‘precursors’ of critical states. (a) and (b) D3 bar
plots of counts of pairedmarket states (MS) forUSA and JPN, respectively; the sumof all the counts add up to 804 forUSA and 797 for
JPN, respectively, as they ought to be. (c) and (d) represent the networks of transition probabilities between different states forUSA
and JPN, respectively. See tables 2 and 3 for the transition probabilities. Note that the probability S S3 4 ofUSA is about 6%,which
indicates that state S3 ofUSAmaywarn of amarket crash S4; similarly, for JPN, the probability S S4 5 is about 8%,which indicates
that the S4 state of JPNmaywarn of a critical state S5 (crash).

Table 2.USA: transition probabilities fourmarket states
(MS) (first is followed by second). Note that the numerical
values given in the table are rounded off to 3 decimal
places.

2ndMS S1 S2 S3 S4

1stMS



S1 0.869 0.112 0.017 0.002

S2 0.221 0.623 0.152 0.004

S3 0.033 0.333 0.575 0.058

S4 0 0 0.273 0.727

Table 3. JPN: transition probabilities offivemarket states (MS) (first is
followed by second). Note that the numerical values given in the table
are rounded off to 3 decimal places.

2ndMS S1 S2 S3 S4 S5

1stMS



S1 0.809 0.155 0.023 0.009 0.005

S2 0.150 0.634 0.179 0.033 0.004

S3 0.014 0.234 0.603 0.120 0.029

S4 0.011 0.075 0.330 0.511 0.075

S5 0.036 0 0.107 0.393 0.464
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Finally, let us test the simple hypothesis whether the system jumps randomly from state Si to Sjwith
probabilitiesWij or not. Note that, if we simply look at the curves infigures 7 (c) and (d), it is not obvious that this
is indeed the case. However, if wemake this hypothesis, we can obtain expressions for the probability that the
system should be in one state over long times. This follows from the general theory ofMarkov chains [29], but
for the sake of keeping the paper self-contained, we briefly explain the details below.

LetPi (n) be the probability that the systembe in state i after n steps (epochs). Using the definition ofWij, as
well as the assumption that the transition to j depends only on the previous state viaWij, and in noway on the
previous history, we obtain

å+ =( ) ( ) ( )P n W P n1 , 1i
j

ji j

where the sum is over all possible states j. After long times, it is plausible, and can in fact be proved rigorously,
that the probability distribution becomes independent of n; in other words, the distribution reaches an
equilibrium state ( )Pi

0 . The latter then satisfies the equations

å= ( )( ) ( )P W P . 2i
j

ji j
0 0

This can be solved explicitly, ifWij is known. The solution can be proved to be always positive, and can always be
normalized such that

å = ( )( )P 1, 3
i

i
0

so that the numbers ( )Pi
0 can indeed be interpreted as a set of probabilities.

In the cases where theWijʼs are given by table 2 (for USA) or table 3 (for JPN), it is straightforward to
compute the equilibriumdistributions: forUSA, onefinds:

= = = = ( )( ) ( ) ( ) ( )P P P P0.523 0.288 0.149 0.040. 41
0

2
0

3
0

4
0

For JPN, on the other hand:

= = =

= = ( )

( ) ( ) ( )

( ) ( )

P P P

P P

0.274 0.308 0.263

0.119 0.036. 5

1
0

2
0

3
0

4
0

5
0

The actual frequencies for the four characteristicmarket states S1, S2, S3, and S4 ofUSA, obtained from
figure 6(a), enable us to compute the probabilities: 0.523, 0.287, 0.149, and 0.041, respectively. Similarly, actual
frequencies for thefive characteristicmarket states S1, S2, S3, S4 and S5 of JPN, obtained from figure 6(c), enable
us to compute the probabilities: 0.277, 0.308, 0.262, 0.118 and 0.035, respectively. These probabilities are indeed
close to those in equations (4) and (5), and therefore our hypothesis is correct.

3. Summary and concluding remarks

In summary, we have studied the identification ofmarket states and long-termprecursors to critical states
(crashes) infinancialmarkets, based on the probabilistic occurrences of correlation patterns, determined using
noise-suppressed short-time correlationmatrices.We analyzed and compared the data of the S&P 500 (USA)
andNikkei 225 (JPN) stockmarkets over a 32 year period.We used the powermappingmethod to reduce the
noise of the singular correlationmatrices and obtained distinct and denser clusters in the two/three-
dimensionalMDSmaps. The effects are prominent also on the similaritymatrices and the correspondingMDS
maps. The evolution of themarket can be followed by the dynamic transitions between themarket states. Using
MDSmaps, we applied k-means clustering to divide the clusters of similar correlation patterns of different
epochs into k groups ormarket states.We showed that based on the cluster radii we could have a fairly robust
determination of the optimal number of clusters. In eachmarket, the value of optimal number of clusters was
chosen by keeping the standard deviation of the intra-cluster distance ‘minimum’ and number of clusters
‘highest’. Thus, based on themodified prescription offinding similar clusters of correlation patterns, we
characterizedUSmarket by fourmarket states and Japanesemarket by five. Onemustmention that thismethod
yields the correlationmatrices that correspond to the critical states (or crashes).We have verified that these
indeed correspond towell-knownfinancialmarket crashes (someminor, somemajor); also, specifically studied
the properties of the emerging spectrum and characterization of the critical states (catastrophic instabilities) in
[10, 15].We also analyzed the co-occurrence probabilities of the pairedmarket states.We observed that the
probability of remaining in the same state ismuch higher than the transition to a different state. It implies that
market states also feel an ‘inertia’—stay in the same states for a long time. Also, probable transitions are the
nearest neighbor transitions and from the co-occurrence table we showed that the probability reduces fast if one
moved away from the diagonal. Hence, the transitions to other statesmainly occurred in immediately adjacent
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states with a few rare transitions to the remote states. The state adjacent to the critical state (crash)may behave
like awarning or a long-termprecursor for the critical state, and this prescription could be helpful in
constructing an early warning system forfinancialmarket crashes.
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